Sebastopol, CA—If you want a basic understanding of computer vision's underlying theory and algorithms, this hands-on introduction is the ideal place to start. You'll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python.
(O'Reilly Media, $39.99 USD) explains computer vision in broad terms that won't bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you've learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills.
- Learn techniques used in robot navigation, medical image analysis, and other computer vision applications
- Work with image mappings and transforms, such as texture warping and panorama creation
- Compute 3D reconstructions from several images of the same scene
- Organize images based on similarity or content, using clustering methods
- Build efficient image retrieval techniques to search for images based on visual content
- Use algorithms to classify image content and recognize objects
- Access the popular OpenCV library through a Python interface
For a review copy or more information please email reviews@oreilly.com. Please include your delivery address and contact information.
Additional Resources
For more information about the book, including table of contents, author bios, and cover graphic, see:
About O’Reilly
O’Reilly Media spreads the knowledge of innovators through its books, online services, magazines, and conferences. Since 1978, O’Reilly Media has been a chronicler and catalyst of cutting-edge development, homing in on the technology trends that really matter and spurring their adoption by amplifying “faint signals” from the alpha geeks who are creating the future. An active participant in the technology community, the company has a long history of advocacy, meme-making, and evangelism.